

Controllable Open-source Water Sensing Spring Final Review

ENVIRONMENTAL REMOTE SENSING USING A LOW-COST GNSS INTERFEROMETRIC REFLECTOMETRY SYSTEM

ADVISOR: PROFESSOR GHOBADI-FAR

TEAM: COWS

Project Purpose and Objectives

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results Section 4: Program Management

Project Background

- <u>Climate Change:</u> Reduced fresh water availability, glacier melting, flooding and sea level rise
 - Need for low cost remote sensing devices that can be deployed in remote locations (no internet or power) and monitor water level in reservoirs, flooding, glacier melting/snow level, and sea level rise
 - Existing remote sensing devices can cost thousands of dollars (tide gauges, high-quality GNSS-IR receivers, etc)

Project Background

- Opportunity to develop a low-cost (less than \$800) open source remote sensing device that will monitor changes in water level or ice/snow height using the GNSS-IR technique
 - Low-cost: able to be built by individuals in low-income communities
 - <u>Open source</u>: no need for additional software development or software subscriptions, software is downloadable from a GitHub repository

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Mission Objective

Develop a low-cost, open source, near real-time water level monitoring system with high temporal resolution that can be deployed in remote locations across the world and be operable in varying weather conditions.

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

GNSS-IR Background

- <u>GNSS-IR:</u> Global Navigation Satellite System Interferometric Reflectometry - Reflected GNSS signal interferes with direct signal, showing up in SNR data

[Credit: Song et. al. (2019)]

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results Section 4: Program Management

CONOPS

Overview

Key Driving Requirements

Requirement Number	Requirement	Parent Requirement	Child Requirement
FR 1.0	The system shall cost less than \$800 per unit, excluding monthly communication subscriptions.	N/A	DR 1.1
FR 2.0	The system shall operate independently in remote environments in a temperature range of -30 to 55 C (-22 to 131 F)	N/A	DR 2.1
FR 3.0	The system shall be able to receive signals from multiple GNSS constellations (GPS, GLONASS, Galileo, and BeiDou) as well as various frequencies (e.g., L1 and L5 for GPS)	N/A	DR 4.1, DR 4.2, DR 4.3, DR 4.4, DR 4.5
DR 2.1	The system shall have a Mean Time Between Failure (MTBF) of greater than 1 year.	FR 2.0	DR 2.1.1, DR 2.1.2, DR 2.1.3
DR 2.3	They system shall operate entirely on its own power.	FR 2.0	DR 2.3.1, DR 2.3.2
DR 7.2.1	The remote sensing device software shall calculate the water level sub-hourly using SNR and elevation angle data to a precision of better than 5 cm.	DR 7.2	DR 7.2.1.1

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Design Description

Functional Block Diagram

Major Design Changes from TRR

- Upgraded Battery to an 18 Ahr battery from original 10.5 Ahr for longer battery life
- Changed position of solar panel
- Changed location of communication antenna
- Updated location of component box

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Elements Evaluated Via Testing

Elements	Evaluation Via Test	_	DR 2.3	They system shall operate entirely on its own power.	
Power	Battery discharge and charge test	<u>_</u>	FR 4.0	The system shall be able to receive and respond to commands from a ground control station regarding system configuration, system reboot, etc.	
Commands	Commands test (system configuration, data processing, system reboot)		FR 5.0	The system shall be able to receive and respond to commands from a ground control	
Water Level Processing	I Real-time transmission, multi-constellation, and two week deployment test			station regarding data processing options (e.g., compute daily average of estimated water level data).	
Accuracy	Two week deployment test and antenna height		FR 3.0	The system shall be able to receive signals from multiple GNSS constellations (GPS, GLONASS, Galileo, and BeiDou) as well as various frequencies (e.g., L1 and L5 for GPS).	
Data	test		FR 7.0	The system shall retrieve sub-daily water level with a precision better than 5 cm.	
Data Transmission /Latency	Real time transmission and two week deployment		FR 8.0	The system shall be able to estimate water level variations within 2 hours latency.	
Water Resistance	Water resistance test (component housing box)		DR 9.1	The system shall transmit the SNR data or final results (water level variation) to a ground control station to display most recent water level and time results on a screen.	
Durability	Two week deployment		DR 0.5	The system shall operate in precipitation conditions	
			Dr 2.1	The system shall have Mean Time Between Failure (MTBF) of greater than 1 year.	
Temperature	Pi pico temperature test		DR 2.2	The system shall operate in a temperature range of -30 to 55 C (-22 to 131 F).	
	n 1: Project Section 2: Desig erview Description	gn		Section 3: Test Overview and Results Section 4: Program Management	

Test Overview and Results

All Tests Performed

SK
COLOREDO DA

Test	Description			
Multi - Constellation	Conduct a multi-constellation signal report test to verify the systems capability to receive and process signals from multiple GNSS constellations using L1 and L5 carrier frequencies.			
Antenna Height	Execute a test to confirm reflector height accuracy to within 5 cm.	Yes		
Commands	Execute a command response test to access the system's ability to receive and execute instructions from a ground control station, including system configuration, data processing options, and reboot commands.			
Real Time Transmission	Execute a real-time transmission test to assess the system's capability to transmit SNR and water level data live to a ground control display, verify the system's proficiency in transmitting water level data with a less than two hour latency, and verify system's capability in sending consistent and accurate health status updates to the ground station.			
Water Resistance	Conduct a water resistance test to evaluate the systems durability when subjected to direct water exposure.			
Pi Pico Temperature	Conduct an operational test on Raspberry Pi Pico in a controlled environment to ensure functionality at a -30 C temperature.			
Power	Test charging and discharging of battery to verify battery life and charge time.			
2 - Week Deployment	Conduct a deployment test near a body of water to verify system operability for 2 weeks.			
	Note: The results of all tests that are not in yellow are in the backup slides.			
Section 1: Project Section 2: Design Description Section 3: Test Overview Section 4: Program Management				

All Tests Performed (Component Level)

Test	Description	Successful?
Buck Converter Test	Conducted a test to verify the output voltage of 5V from the buck converter with a 12V input.	Yes
Pressure Sensor Test	Conducted a test to verify correct pressure output and accuracy.	Yes
Temperature and Humidity Sensor Test	Conducted a test to verify correct temperature and humidity outputs and accuracy.	Yes
Communication Module and Antenna Test	Conducted a test to verify that the comms module could transmit and receive properly using the external comms antenna.	Yes
GNSS Module and Antenna Test	Conducted a test to verify the GNSS receiver could properly receive SNR arcs from multiple GNSS constellations and multiple frequencies and output SNR, time, elevation angle, and azimuth data,	Yes

Note: The results of all tests that are not in yellow are in the backup slides.

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

N

Section 4: Program Management

Critical Test I: Power

Power Test - Verifying our CDR Power Models

Completed testing of the battery life of our lead acid battery and solar panel charging, which validated the Power Models from CDR

- Timed and supervised battery discharging, compared to predicted battery discharge time from CDR power model
- Test performed the 6 days leading up to Symposium, April 12th-18th

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Power Test: Requirements

Requirement Number	Requirement	Parent Requirement
DR 2.3	The system shall operate entirely on its own power.	FR 2.0
DR 2.3.1	The power subsystem shall supply power continuously for at least 3 days without power generation.	DR 2.3
DR 2.3.1.1	The Batteries shall supply power continuously for at least 3 days without power generation.	DR 2.3.1
DR 2.3.2	The Solar Panels shall recharge the batteries in no more than 3 peak sun hours (1000 W/m^2 or more solar irradiance).	DR 2.3

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results Section 4: Program Management

Power Test - Test Setup

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section Mc

Section 4: Program Management

Power Model - Equations and Analysis

Power Consumption:

 $P = I \cdot V \quad [W]$

 $Capacity = P \cdot \Delta t \ [Whr]$

 $Battery \ Capacity \ = \ V_{Battery} \cdot I_{Battery \ Capacity} \ [Whr]$

Battery Charging:

Discharged Battery Capacity = (Battery Capacity) · DOD [Whr]

Note: DOD (Depth of discharge) is the percent that the battery has been depleted relative to the overall battery capacity.

Energy Required for Full Charge = (Discharged Battery Capacity)/(Lead Acid Efficiency) [Whr]

Solar Output = $W_{Solar} \cdot (PWM \ Efficiency) \ [W]$

Charge Time = (Energy Required for Full Charge)/(Adjusted Solar Output) [hr]

Battery Life:

$$Efficiency_{Buck Converter} = P_{out} / P_{in} = (V_{out} \cdot I_{out}) / (V_{Batterv} \cdot I_{Batterv})$$

$$Battery Life = I_{Battery Capacity} / I_{Battery} [hr]$$

Section 1: Project Overview Section 3: Test Overview and Results

Section 4: Program Management

Power Model - Predicted Results

- Total power consumption for three days of **126.77 Whr** - Battery capacity is 216 Whr (this is with the 18Ah battery)
- Time to charge batteries from 50% depth of discharge of **3.38 peak** sun hours
- **2.296 days** (max current draw) to **4.34 days** (min current draw) battery life
 - Sufficient battery capacity for 3 days without power generation

Power Testing Results

	Parameter	Model	Testing Result	
	Time to charge from 50%	3.38 Sun hours	N/A, more on following slide	
	Battery life	2.30 - 4.34 Days	> 5.5 days	
DR 2.3.1	The power subsystem sha without power generatio	all supply power continuously n.	-	DR 2.3
	The Selar Papels shall res	The Selar Danels shall resharge the batteries in no more than 2 neak sun		

	The Solar Panels shall recharge the batteries in no more than 3 peak sun	
DR 2.3.2	hours (1000 W/m^2 or more solar irradiance).	DR 2.3

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Differences Between Power Modelling and Testing Results, Uncertainty in Data

Parameter	Model	Testing Result
Time to charge from 50%	3.38 Sun hours	N/A
Battery life	2.30 - 4.34 Days	> 5.5 days

Charge time

- Öptimal panel efficiency
- Consistent solar radiation
- We were unable to discharge the battery enough to rigorously test the charge time after battery life test
 - Boulder reservoir test has survived overcast days, but this is not a thorough validation
- Will test for final report

<u>Battery life</u>

- Max load at all times assumption
- Gross overestimation of power needs of Pi Pico and communications module
 - Communications module was not active at all times and has a lower power standby mode

Section 3: Test Overview and Results

Power Testing - Validation of Project Mission Objectives

- Verified the ability of our system to operate in remote environments off of its own power
 - Greater than 3 day battery life (in case storm moves in and blocks out sun for solar power generation)
 - Less than 3 hours solar charge time for 50% depth of discharge (ensures fast charging of battery in minimal amount of time, ensuring system operability in varying weather conditions)

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Critical Test II: Two Week Deployment

Two Week Deployment Test - What is being Tested and Why 🗭

Day in The Life Test:

- Verify that the Remote Sensing Device (RSD) works for a two week a) period at a remote location without any failures between the RSD and the ground control station (GCS)
- Verify functionality of calculating water level with an accuracy of b) better than 5 cm
- Verify mean time between failure of greater than 1 year by verifying C) system operability for a two week test period
- Verify functionality of mechanical subsystem (i.e. pole and housing d) remain attached to around)

Section 1: Project Overview

Section 2: Design Description

Section 3: Test Overview and Results

Section 4: Program Manaaement

Two Week Deployment Test - Requirements

Requirement Number	Requirement			
FR 2.0	The system shall operate independently in remote environments in a temperature range of -30 to 55 C (-22 to 131 F).			
FR 4.0	The system shall be able to receive and respond to commands from a ground control station regarding system configuration, system reboot, etc.			
FR 5.0	The system shall be able to receive and respond to commands from a ground control station regarding data processing options (e.g., compute daily average of estimated water level data).			
FR 6.0	The system shall send health status updates to the ground station.			
FR 7.0	The system shall retrieve sub-daily water level with a precision better than 5 cm.			
FR 9.0	The system shall be able to transmit the SNR data and/or final results (water level variation) to a ground control station (e.g., a laptop) to be displayed live on a screen.			
DR 2.1	The system shall have a Mean Time Between Failure (MTBF) of greater than 1 year.			
DR 2.3	The system shall operate entirely on its own power.			
DR 7.2	The system shall calculate the water level variation using SNR and elevation angle data with a precision of better than 5 cm.			
Section 1: Project Overview	Section 2: Design Description Section 3: Test Overview and Results Section 4: Program Management			

Two Week Deployment Test - Requirements (Continued)

Requirement Number	Requirement
DR 0.6	The system shall attach to the ground.
DR 2.1.1	The power subsystem shall have a MTBF of greater than 1 year.
DR 2.1.2	The remote sensing device comms subsystem shall have a MTBF of greater than 1 year.
DR 2.1.3	The data storage subsystem shall have a MTBF of greater than 1 year.
DR 9.1.3	The GNSS subsystem shall send SNR data to the data storage subsystem.
DR 2.1.4	The GNSS subsystem shall have a MTBF of greater than 1 year.
DR 2.1.5	The weather measurement subsystem shall have a MTBF of greater than 1 year.
DR 2.1.6	The mechanical subsystem shall have a MTBF of greater than 1 year.
DR 0.6.1	The mechanical subsystem shall attach to the ground.
DR 0.4.2	The remote sensing device software shall store daily water level data to the memory drive.

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results Section 4: Program Management

Two Week Deployment Test - Requirements (Continued)

Requirement Number	Requirement
DR 0.4.1	The remote sensing device software shall clear unnecessary data off of the memory drive once the water level data is received by the ground control station.
DR 0.5	The system shall operate in precipitation (rain and snow) conditions.
DR 8.1	The system shall estimate water level variations within 2 hours latency.
DR 2.1.7	The remote sensing device software shall have a MTBF of greater than 1 year.
DR 2.1.8	The ground control station software shall have a MTBF of greater than 1 year.

<u>Note</u>: We are in agreement with our faculty advisor that the 2 week deployment test is sufficient to verify our MTBF of 1 year requirements. This test will also verify applicable component requirements (not listed).

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

view

Two Week Deployment Test - Test Setup

Description

Sensors

Overview

Placement/ Calibration Plans

and Results

Management

Two Week Deployment Test - Test Setup

<u>Sensors</u>

Placement/ Calibration Plans

Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment Test: Results

- Truth data for Boulder Reservoir water height is from Northern Water's website, which is reported to 1/100th of a foot
- Data collected from Apr 14-17 is plotted vs truth data, excluding outliers > 40cm
- Daily Average taken to account for inaccuracy from real-time GNSS-IR implementation
 - Meets < 5cm accuracy during 1day period requirement

34

2-Week Deployment Test: Results

S

Home Page

FR 6.0	The system shall send health status updates to the ground station.		
FR 7.0	The system shall retrieve sub-daily water level with a precision better than 5 cm.		
FR 9.0	The system shall be able to transmit the SNR data and/or final results (water level variation) to a ground control station (e.g., a laptop) to be displayed live on a screen.		
ection 1: Project Overview	Section 2: Design Description Section 3: Test Overview and Results Management		

2-Week Deployment Test: Results

Commands Page

Home History Commands Log Out				
GNSS-IR Station: Cor	GNSS-IR Station: Commands		Home History Commands Log Out	
Reboot	Select a Command to send:	GNSS-IR Station: Commands		
Send Command?	Command Status	Change Azimuth / Elevation Angle Masks Azimuth Angle 0* - 360*	Select a Command to send:	
Home History Commands Log Out GNSS-IR Station: Commands Select a Command to send: Change Sampling Information v		Elevation Angle 0* 4.5* Reflection Height 0 • 10		
Sampling Rate & Closeout Time 15 [s] 2700 [s]		Send Command?	Command Status	
Send Command?	Command Status			
FR 4.0	The system shall be able to receive and respond to commands from a ground control station regarding system configuration, system reboot, etc.			
FR 5.0	The system shall be able to receive and respond to commands from a ground control station regarding data processing options (e.g., compute daily average of estimated water level data).			

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results . Section 4: Program Management

2-Week Deployment Test: Results

- System remained attached to ground over entire two week period
 - 80-90 mph wind storm over two days (April 6th and 7th) occurred during the two week deployment period
- All components remained functional during several rain storms and over entire two week period (no water got into the electrical box)
- **Power system remained operational** during the entire two week period
 - Over several site visits over the two week deployment period, the battery light on our charge controller remained green (above 50% battery)
 - Verified that the solar panel was able to charge the battery sufficiently charged above 50% battery

		FR 2.0	The system shall operate independently in remote environments in a temperature range of -30 to 55 C (-22 to 131 F).
┼-•	DR 0.6	The system shall attach to the ground.	
		DR 0.5	The system shall operate in precipitation (rain
		DR 0.5	and snow) conditions.

 DR 2.3	The system shall operate entirely on its own power.
 DR 2.1	The system shall have a Mean Time Between Failure (MTBF) of greater than 1 year.

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment: Results

Water Level Message Time	Latency (hr:min:sec)	Water Level Message time from Collection to Display on Ground Station Average: [hh:mm:ss]	
Minimum	00:30:08	00:44:40 Maximum: [hh:mm:ss]	
Maximum	1:00:44	01:00:44	
Average	00:44:40	Minimum: [hh:mm:ss] 00:30:08	
DR 8.1 The	The system shall estimate water level variations within 2 hours latency.		

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment: Issues

Memory allocation errors on the Pi

<u>Pico</u>

- System stopped working after 6 hours
- Unable to handle data-processing

Resolved by:

- Altering how data was stored/accessed
- Downsampling GNSS data from 15s to 30s to reduce the number of data points collected

MemoryError: memory allocation failed, allocating 4096 bytes Traceback (most recent call last): File "mainClass.py", line 405, in closeout_curve File "Reflection_Height.py", line 27, in reflection_height File "Reflection_Height.py", line 27, in reflection_height File "Reflection_Height.py", line 27, in reflection_height File "Reflection_Height.py", line 115, in flat_snr File "umatrix.py", line 11, in zeros File "umatrix.py", line 8, in fill File "umatrix.py", line 26, in __init__ File "umatrix.py", line 26, in <listcomp> MemoryError: memory allocation failed, allocating 4096 bytes Traceback (most recent call last): File "mainClass.py", line 505, in write_gnss MemoryError: memory allocation failed, allocating 232 bytes

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment: Issues

Encountered several outlier data points

- With real-time processing, some datasets will be better than others
- Leads to occasional outliers in reflector height data points

Resolved by:

- Better filtering of elevation angles
- Utilizing stricter minimum/maximum reflector height masking
- Filtering the number of data points after masks
- Averaging over 1 day period

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment: Issues

Data Information

<u>Date:</u> April 3rd, 2024 <u>Location:</u> Boulder Reservoir <u>Satellite:</u> GPS <u>True Height:</u> 2 m reflector height

For our quality control, we decided to use data that contain more than 35 points, which increases the overall accuracy of height estimation.

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

2-Week Deployment - Mission Achievement

Verified the functionality of our system for a long period in a remote location, meeting the following requirements:

- Sufficient power to operate the system more than 3 days
- Near-real time transmission of both data and commands in 30-60 mins
- Durability of our mechanical subsystem under severe weather conditions
- Better than 5cm accuracy in measuring variation of water level
- Test extension approved by Boulder Reservoir, will continue until Friday May 3rd

Section 1: Project Overview Section 2: Design Description Section 3: Test Overview and Results

Section 4: Program Management

Program Management and Systems Engineering

Main Challenges and Successes

Challenaes:

- Software development with limited RAM on a Pi Pico
- Managing a \$800 budget for our system
- Software development delayed some tests
- **Successes:** Created a reliable remote sensing device that: 1) Receives and stores GPS NMEA data in real time

 - Processes data into water level using on-node processing on a Pi Pico Microcontroller with limited RAM and store water level data on a micro SD 2) card
 - 3) Transmits water level data to a user interface over Iridium communications satellites to be displayed on a screen to a user within 2 hours latency
 - Receives and responds to system configuration, data processing, and system reboot commands sent remotely by a user through the ground station over Iridium communication satellites
 - Operates in varying weather conditions (i.e. rain storms and severe wind)
 - Has a low-cost of close to \$800 with COTS components (our system cost 6) \$850.49)
 - Uses open source software (Micropython) 7)

Budget

CDR Estimated Budget

Component	Name/Desc	Quantity	Price Per Unit	Margin	Total
GNSS Chip	Max M10s	1.00	\$21.00	20.00%	\$25.20
GNSS Antenna	ANN-MB5	1.00	\$34.72	0.00%	\$34.72
Comms Module	RockBlock 9603N	1.00	\$267.00	0.00%	\$267.00
Comms Antenna	m1621-hct	1.00	\$72.00	0.00%	\$72.00
Microprocessor	Raspberry Pi Pico	1.00	\$4.00	0.00%	\$4.00
Housing	YETLEBOX Waterproof Electrical Box	1.00	\$51.70	10.00%	\$56.87
Data Storage Breakout	Adafruit MicroSD Card Breakout + Kingston Industrial Micro SD card	1.00	\$25.68	10.00%	\$28.25
Energy Storage	PS-12100H-F2 SLA Battery	1.00	\$40.44	20.00%	\$48.53
Power Generaton	Voltaic Systems 50W 18V Solar Panel + Solar Panel Mount + WindyNation 10A PWM Charge Controller	1.00	\$152.00	10.00%	\$167.20
PCB		1.00	\$7.00	100.00	\$14.00
Structure Tower		1.00	\$61.46	30.00%	\$79.90
					TOTAL
					\$797.66

Actual Budget

Component	Name/Desc	Quantity	Price Per Unit	Total
GNSS Chip	NEO-F10N	1.00	\$63.75	\$63.75
GNSS Antenna	ANN-MB5	1.00	\$34.72	\$34.72
Comms Module	RockBlock 9603N	1.00	\$267.00	\$267.00
Comms Antenna	M1621-HCT	1.00	\$72.00	\$72.00
Microprocessor	Raspberry Pi Pico	1.00	\$4.00	\$4.00
Housing	YETLEBOX Waterproof Electrical Box	1.00	\$44.00	\$44.00
Data Storage Breakout	Adafruit MicroSD Card Breakout + Kingston Industrial Micro 32GB SD	1.00	\$42.81	\$42.81
Energy Storage	PS-12180-F2 SLA Battery	1.00	\$45.40	\$45.40
Power Generaton	Voltaic Systems 50W 18V Solar Panel + Solar Panel Mount + WindyNation 10A PWM Charge Controller	1.00	\$151.00	\$151.00
РСВ	Did not purchase	0.00	\$7.00	\$0.00
Structure Tower	PVC pipe, couplings, clamps, brackets	1.00	\$61.46	\$61.46
Pressure sensor	LPS33HW pressure sensor	1.00	\$12.50	\$12.50
Temperature sensor	SHT31 temperature sensor	1.00	\$19.90	\$19.90
Buck converter	MPM3610 5V	1.00	\$6.95	\$6.95
Miscellaneous	Screws, Cables, Glue, etc.	1.00	\$25.00	\$25.00
				TOTAL
				\$850.49

Total Budget Remaining:

-Build of TWO systems was largest cost (\$850.49/ea)

Section 1: Project Overview Section 3: Test Overview and Results

\$

Section 4: Program Management

Budget

Planned Schedule vs. Actual

<u>3 Major Deviations:</u> Innards Attach (waiting for parts to ship), Software crunch (real-time implementation of GNSS-IR), Boulder Res testing delay by 2 weeks

Section 1: Project Overview Section 3: Test Overview and Results

Section 4: Program Management

Industrial Cost

456 hours x 9 people = **4,104 Total hours worked** \$36.06 per hour x 4,104 = **\$147,990 Wages** Material cost = **\$3,965**

Industry cost = (\$147,990 x 1.7) + (\$3,965) = **\$255,548**

 Section 2: Design
 Description
 Section 3: Test Overview and Results

Section 1: Project Overview 47

Section 4: Program

Manaaement

Thank you! Questions?

Backup Slides

Component Data Sheets

Component	Data Sheet Link	
Solar Panel	P150_dwg.pdf (mybigcommerce.com)	
Charge Controller	TrakMax Owners Manual (shopify.com)	
Battery	PS 12100H F2-1350745.pdf (mouser.com)	
Buck Converter	monolithicpower.com/en/documentview/productdocument/index/version/2/document_type/Datasheet/lang/en/sku/MPM3610GQV- Z/document_id/2090/	
Comms Module	RockBLOCK-9603-Data-Sheet.pdf (groundcontrol.com)	
Comms Antenna	https://www.mouser.com/datasheet/2/1055/m1621hct-ext-1880193.pdf	
GNSS Receiver	NEO-F10N Data sheet (u-blox.com)	
GNSS Antenna	ANN-MB5 (u-blox.com)	
Microprocessor	Raspberry Pi Documentation - Raspberry Pi Pico and Pico W	
Data Storage	Download Micro SD Card Breakout Board Tutorial Adafruit Learning System	
Temperature/Humidity Sensor	SEN0385 DFRobot Mouser	
Pressure Sensor	Adafruit LPS35HW Water Resistant Pressure Sensor [STEMMA QT] : ID 4258 : \$12.50 : Adafruit Industries, Unique & fun DIY electronics and kits	
Housing	https://www.amazon.com/YETLEBOX-Waterproof-Electrical-220x170x110mm-Electronics/dp	

<u>GNSS-IR</u>: reflector height estimation from SNR data <u>w.r.t.</u> sin(e)

$\delta SNR(t) = A \cdot cos(\psi(t) + \theta);$
w(t) = sin(e(t))
$\psi(t) = \frac{4\pi h}{\lambda} sin(e(t)) = \frac{4\pi h}{\lambda} w(t)$
$2\pi f = \frac{d\psi(t)}{dw(t)} = \frac{d\psi(t)}{dt}\frac{dt}{dw(t)}$
$\frac{d\psi(t)}{dt} = \frac{4\pi}{\lambda} [\dot{h} \cdot sin(e(t)) + h \cdot cos(e(t)) \cdot \dot{e}(t)]$
$\frac{\frac{dw(t)}{dt}}{\frac{dt}{dt}} = \frac{\frac{d(sin(e(t)))}{dt}}{\frac{dt}{dw(t)}} = \frac{cos(e(t)) \cdot \dot{e}(t)}{\frac{1}{cos(e(t)) \cdot \dot{e}(t)}}$

Frequency analysis $2\pi f = \frac{d\psi(t)}{dw(t)} = \frac{d\psi(t)}{dt}\frac{dt}{dw(t)}$ $\frac{d\psi(t)}{dt} = \frac{4\pi}{\lambda} [\dot{h} \cdot \sin(e(t)) + h \cdot \cos(e(t)) \cdot \dot{e}(t)]$ $\frac{dt}{dw(t)} = \frac{1}{\cos(e(t)) \cdot \dot{e}(t)}$ $2\pi f = \frac{4\pi}{\lambda} \left[\mathbf{h} + \frac{\dot{\mathbf{h}} \cdot tan(\mathbf{e}(t))}{\dot{\mathbf{e}}(t)} \right] \Rightarrow \frac{\lambda}{2} f = \mathbf{h} + \frac{\dot{\mathbf{h}} \cdot tan(\mathbf{e}(t))}{\dot{\mathbf{e}}(t)}$ $\overline{h} = \mathbf{h} + \dot{h} \frac{tan(e(t))}{\dot{e}(t)}$ *h*: estimated from LSP of SNR data wr.t. sin(e)

$$\begin{bmatrix} \overline{h_1} \\ \overline{h_2} \\ \vdots \\ \overline{h_N} \end{bmatrix} = \begin{bmatrix} 1 & \frac{tan(e(t_1))}{\dot{e}(t_1)} \\ 1 & \frac{tan(e(t_2))}{\dot{e}(t_2)} \\ \vdots \\ 1 & \frac{tan(e(t_N))}{\dot{e}(t_N)} \end{bmatrix} \begin{bmatrix} h \\ \dot{h} \end{bmatrix} \Rightarrow L = Ax \Rightarrow \widehat{x} = (A^T A)^{-1} (A^T L)$$

$$h = \overline{h} - \dot{h} \frac{tan(e(t))}{\dot{e}(t)}$$

Elevation Angle Correction Model

Since our reflection height model is dependent on elevation angle, a correction factor is necessary for the elevation angle value to enhance the accuracy of height estimation.

Tropospheric Error Equation

$$\Delta e = 10^{-6} N_0 \frac{\cos(e)}{\sin(e) + 0.00175 \tan(87.5^\circ - e)}$$

where

$$N_0 = K_1 \frac{P_d}{T_K} + K_2 \frac{P_w}{T_K} + K_3 \frac{P_w}{T_K^2}$$

 $K_1 = 77.689 \; [\text{K/hPa}]$ $K_2 = 71.2952 \; [\text{K/hPa}]$ $K_3 = 375463 \; [\text{K}^2/\text{hPa}]$

$$\begin{split} P_w = P_{sat} \frac{humidity}{100} \\ P_{sat} = 6.1094 \mathrm{exp}(\frac{17.625T_C}{T_C+243.04}) \end{split}$$

Note: Sample rate is 15s

Location		Boulder
Ambient Temperature		20 C
Ambient Pressure		840 hPa
Relative Humidity		40 %
Original		2.05 m
Corrected		2.06 m

Note: Sample rate is 15s

Location	Hawaii
Ambient Temperature	32 C
Ambient Pressure	1010 hPa
Relative Humidity	72 %

Original	2.05 m
Corrected	2.085 m

Note: Sample Rate is 30s

Location	Boulder
Ambient Temperature	20 C
Ambient Pressure	840 hPa
Relative Humidity	40 %
	40 /0

Original	2.067 m
Corrected	2.075 m

Note: Sample Rate is 30s

Location	Hawaii
Ambient Temperature	32 C
Ambient Pressure	1010 hPa
Relative Humidity	72 %

Original	2.067 m
Corrected	2.10 m

Power Model - Equations

 $e_{module} = Module$ efficiency

 e_{cloudy} = Power generation efficiency in a cloudy day compared to a sunny day

A = Area of solar panel [m²]

Change in power generation of a day in a sunny and a cloudy day [W]

```
P_{sunny} = e_{module} \cdot G_{\theta} \cdot A
```

 $P_{cloudy} = e_{cloudy} \cdot P_{sunny}$

 θ = Latitude angle relative to the equatorial plane [deg] α = Earth tilt angle relative to the perpendicular to the solar plane [deg] Angle of sun at sunrise relative to the equatorial plane [deg]

 $\gamma = \sin^{-1}(tan(\theta)tan(\alpha))$

Sunrise and sunset time [hr]

$$sunrise/sunset = 12 \mp \frac{90^{\circ} + \gamma}{30^{\circ}}$$

Power capacity of a day in a sunny and a cloudy day [Whr]

$$PC_{sunny} = \int_{sunrise}^{sunset} P_{sunny} \, dt$$

$$PC_{cloudy} = \int_{sunrise}^{sunset} P_{cloudy} \, dt$$

Power Model - Equations

Power Consumption:

 $P = I \cdot V [W]$

Capacity = $P \cdot \Delta t$ [Whr]

Battery Capacity = $V_{Battery} \cdot I_{Battery Capacity}$ [Whr]

Battery Charging:

Discharged Battery Capacity = (Battery Capacity) · DOD [Whr]

Note: DOD (Depth of discharge) is the percent that the battery has been depleted relative to the overall battery capacity.

Energy Required for Full Charge = (Discharged Battery Capacity)/(Lead Acid Efficiency) [Whr]

Solar Output = $W_{\text{solar}} \cdot (PWM \ Efficiency) \ [W]$

Charge Time = (Energy Required for Full Charge)/(Adjusted Solar Output) [hr]

Battery Life:

$$Efficiency_{Buck Converter} = P_{out} / P_{in} = (V_{out} \cdot I_{out}) / (V_{Battery} \cdot I_{Battery})$$

 $Battery Life = I_{Battery Capacity} / I_{Battery} [hr]$

Power Generation

 θ = Latitude angle relative to the equatorial plane [deg]

 α = Earth tilt angle relative to the perpendicular to the solar plane [deg] Latitude angle relative to the solar plane [deg]

 $\Omega=\theta\mp\alpha$

Solar irradiance at altitude during daylight hours $[W\!/m^2]$

 $G_{\theta} = at^2 + bt + c$

To find the coefficients a, b, and c

$G_{\theta,1}$		t_{1}^{2}	t_1	1	a
$G_{\theta,2}$	=	$t_2^{\overline{2}}$	t_2	1	b
$egin{array}{c} G_{ heta,1} \ G_{ heta,2} \ G_{ heta,3} \end{array}$		$t_{2}^{\hat{2}} \\ t_{3}^{2}$	t_3	1	$egin{a} b \\ c \end{bmatrix}$
L - /- 1		20	-	-	

Maximum solar irradiance $G_{max,\theta} = G_{max} \cos \Omega [W/m^2]$ $t_i =$ Sunrise time, $t_m =$ Sun peak, $t_e =$ Sunset time

$\begin{bmatrix} 0\\G_{\max,\theta}\\0\end{bmatrix} =$	$= \begin{bmatrix} t_i^2 \\ t_m^2 \\ t_e^2 \end{bmatrix}$	$t_i \\ t_m \\ t_e$	$\begin{bmatrix} 1\\1\\b\\c \end{bmatrix}$
$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} t_i^2 \\ t_m^2 \\ t_e^2 \end{bmatrix}$	$egin{array}{ccc} t_1 & 1 \ t_2 & 1 \ t_3 & 1 \end{array}$		$\begin{bmatrix} 0\\ G_{\max,\theta}\\ 0\end{bmatrix}$

Power Model - Graphs (Location at Lat 40 deg)

Boulder at Latitude 40 deg North

Power Capacity	Summer [Whr]	Winter [Whr]
Clear Day	581	168
Cloudy Day	116	33.5

Note: Our total battery capacity is 126 Whr

Power Model - Graphs (Location at Lat 60 Deg)

Anchorage at Latitude 60 deg North

Power Capacity	Summer [Whr]	Winter [Whr]
Clear Day	606	26.0
Cloudy Day	121	5.19

Note: Our total battery capacity is 126 Whr

Power Model - Uncertainty

- Current draw from all components will vary over time
- Solar irradiance variation with altitude
- Solar panel mounting angle (we assumed worst case and flat)
- Manufacturing imperfections (currents and voltages from datasheets may vary from values on spec sheets)

Multi Constellation / Multi Band Test

We were able to collect signals from multiple constellations such as GPS and Galileo, denoted respectively as "GPGSV" and "GAGSV"

The GPS signal with ID 1 indicates the L1 band (1575.42 MHz) The GPS signal with ID 8 indicates the L5 band (1176.45 MHz) The GAL signal with ID 7 indicates the L1 band (1575.42 MHz)

Signal ID	PRN Number	Satellite Type	Initial Time Point (s)
1	5	GPGSV	1712192846
0	40	48	46
8	6	GPGSV	1712351420
0	40	46	43
7	5	GAGSV	1712193541
0	12	37	26

Antenna Height Test

- GNSS Antenna and system set up outside on grass
- Antenna placed at a height of 2.27 meters off the ground
- System measures height of 2.23 meters, which falls within the 5 cm accuracy range

Measured Reflector height

Commands Test

1712612217: Message send success, status 0 1712612217: Reboot command recieved, spawning reboot event 1712612224: <- The epoch 1712612224: GNSS Handler, Message Sender, and 6hr Cleanup initialized

Reboot Command

Pico (W) Remote Workspace > sd > III mask.csv	Pico (W) Remote Workspace > sd > Ⅲ mask.csv
1 0,360	1 90,180
2 0,45	2 5,35
3 0,5	3 1,6

Mask Angles Pre-Command

Mask Angles Post-Command

- Reboot and Mask Angle commands sent from the ground station to the system
- Success determined by system response to commands (Latency ~1.5hr)

Real Time Transmission Test

- During two week deployment, health status updates were received by ground station once every hour
- Latency Average: 44:36
 - Max: 1:00:44, Min: 30:08
- Verified that the requirement of maximum 2 hours latency is met

```
Water Level Message time from Collection to Display on Ground Station
Average: [hh:mm:ss]
    00:44:40
Maximum: [hh:mm:ss]
    01:00:44
Minimum: [hh:mm:ss]
    00:30:08
```

Message Latency Calculation Results

Water Resistance Test

- Component box subjected to constant water flow via shower head, with each face of the box oriented towards the water source for a period
- First test had minor leakage, applied flex seal and reattempted
- Second test had no leakage

Interior of component box after second test

Pi Pico Temperature Test

- Pi Pico placed in cooler with dry ice to simulate low operating temperatures
- Pi Pico was able to complete computations in temperatures of -37 C
- Ensures Pi Pico meets temperature range operation conditions (-30 C to 50 C)

Temperature Readout from Pi Pico Dry Ice Environment

Buck Converter Test

2/9/2024: Test was performed with MPM3610 buck converter

- Verified 5V output with 12V input
- Input 12V from power supply directly into buck converter
- Verified 5V output using a multimeter

